Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 8114, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582951

ABSTRACT

The COVID-19 pandemic has been a life threatening and spreads wildly with physical human contact. Physical distancing is recommended by health experts to prevent the spread; thus, agronomic research has to be designed in conformity to this preventive standard during the pandemic. Consequently, this study was designed to evaluate the reliability of using digital tools in nutrient management research amid the COVID-19 pandemic in northern Nigeria. Fifty extension agents (EAs) were selected across 15 LGAs of Kaduna and Kano states. The EAs were trained on how to generate fertilizer recommendation using an android mobile phone-based nutrient expert (NE), to measure farmers' field sizes using UTM Area measure mobile phone app, and open data kit to record, submit and aggregate data during the exercise. Each EA covered 50 farms, where two nutrient management practices-one determined by the farmers: farmer fertilizer practice (FFP), and the other generated using the NE were evaluated. Results show that around 90% of the farmers have an average field size of 1.13 ha. All selected farmers used improved maize varieties for planting, among which 21% been able to use the exact recommended or lower seed rate. Use of inorganic fertilizer was 33% higher than the average recommended NE rate, while average yield of the NE fields was 48% higher than for the FFP. The results of this study indicate that yield can be improved with site-specific nutrient management (SSNM) extension approach. The SSNM using digital tools as the NE seem promising and befits to agronomic research in northern Nigeria amid the COVID-19 pandemic.


Subject(s)
COVID-19 , Zea mays , Humans , Pandemics , Nigeria/epidemiology , Fertilizers , Digital Technology , Reproducibility of Results , Nitrogen/analysis , COVID-19/epidemiology , COVID-19/prevention & control , Nutrients
2.
Field Crops Res ; 241: 107585, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31534300

ABSTRACT

Establishing balanced nutrient requirements for maize (Zea mays L.) in the Northern Nigerian Savanna is paramount to develop site-specific fertilizer recommendations to increase maize yield, profits of farmers and avoid negative environmental impacts of fertilizer use. The model QUEFTS (QUantitative Evaluation of Fertility of Tropical Soils) was used to estimate balanced nitrogen (N), phosphorus (P) and potassium (K) requirements for maize production in the Northern Nigerian Savanna. Data from on-farm nutrient omission trials conducted in 2015 and 2016 rainy seasons in two agro-ecological zones in the Northern Nigerian Savanna (i.e. Northern Guinea Savanna "NGS" and Sudan Savanna "SS") were used to parameterize and validate the QUEFTS model. The relations between indigenous soil N, P, and K supply and soil properties were not well described with the QUEFTS default equations and consequently new and better fitting equations were derived. The parameters of maximum accumulation (a) and dilution (d) in kg grain per kg nutrient for the QUEFTS model obtained were respectively 35 and 79 for N, 200 and 527 for P and 25 and 117 for K in the NGS zone; 32 and 79 for N, 164 and 528 for P and 24 and 136 for K in the SS zone; and 35 and 79 for N, 199 and 528 for P and 24 and 124 for K when the data of the two zones were combined. There was a close agreement between observed and parameterized QUEFTS predicted yields in each of the agro-ecological zone (R2 = 0.69 for the NGS and 0.75 for the SS). Although with a slight reduction in the prediction power, a good fit between the observed and model predicted grain yield was also detected when the data for the two agro-ecological zones were combined (R2 = 0.67). Therefore, across the two agro-ecological zones, the model predicted a linear relationship between grain yield and above-ground nutrient uptake until yield reached about 50 to 60% of the yield potential. When the yield target reached 60% of the potential yield (i.e. 6.0 t ha-1), the model showed above-ground balanced nutrient uptake of 20.7, 3.4 and 27.1 kg N, P, and K, respectively, per one tonne of maize grain. These results suggest an average NPK ratio in the plant dry matter of about 6.1:1:7.9. We concluded that the QUEFTS model can be widely used for balanced nutrient requirement estimations and development of site-specific fertilizer recommendations for maize intensification in the Northern Nigerian Savanna.

SELECTION OF CITATIONS
SEARCH DETAIL
...